

Passionately pursuing transdisciplinary research to advance human health and knowledge.

Imperial College London PhD Student MPhil, ScB

EDUCATION

2024

CONTACT

☑ brian_schilder [at] alumni.brown.edu

- L US
- +1 908-268-9859

UK

+44 073-0653-7736

- in LinkedIn
- **G** Google Scholar
- **G** GitHub
- **W** Twitter
- YouTube
- Personal Website
- Lab Website

SUMMARY

15+ years of research = 23 publications > 4 preprints 41 software packages 11 databases & apps ir 22 talks I 13+ years of teaching & team management

TABLE OF CONTENTS

T

3	Education
/	Skills
/	Expertise
3	Publications
~	Preprints
)	Preprints Acknowledgemer
3	Reviewerships
	Internal talks
G	Invited talks
c	Conference talks
ß	Posters
1	Experience
	Teaching
	Packages
	Websites
	Databases
5	Grants

Its

- **Q** Awards
- **Affiliations**
- **d** Data visualisation
- **Extracurricular**

2017

2011

CORE SKILLS

Research

15+ years of deep expertise in a genomics, AI, evolutionary biology and biomedicine. Seamlessly fuses ideas and methods across multiple domains.

- Publication record: 23 publications, 4 preprints and 13 awarded grants.
- Reproducibility: Global leader in promoting and enabling High-performance computing: Highly parallelised reproducible scientific practices. 🖹 Writes 100% reproducible manuscripts programmatically.
- Bioinformatics: Created 45 Python and R packages to address key challenges in biological research.
 - anayses and AI model training (CPUs and GPUs).
 - Web development: 6+ websites, web apps, and interactive reports.

AI & Machine Learning

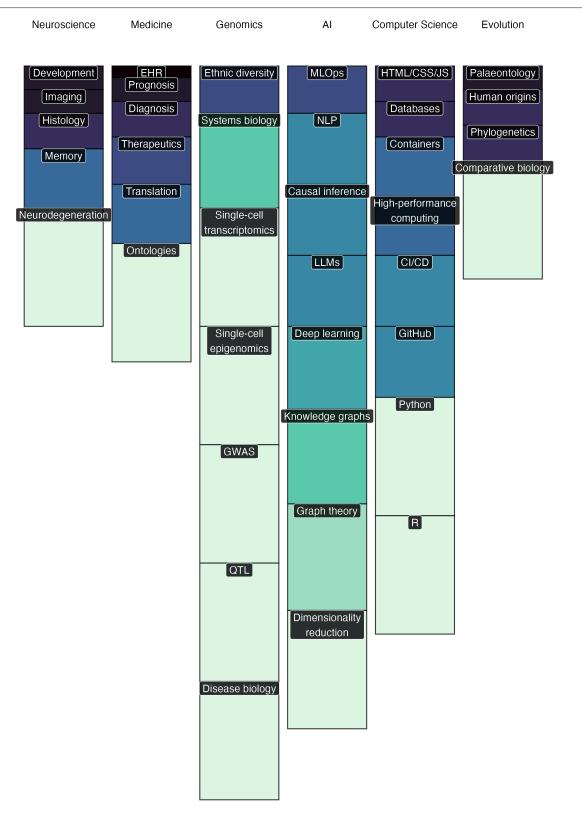
Proficient in developing and deploying AI/MI models (PyTorch, tensorflow, Keras, sklearn and H2O) to solve complex biological problems. Applied examples include:

- · Causal variant prediction: Used functional impact predictions from DNA sequence models (DeepSEA, Basenji, IMPACT) to validate SNPs prioritised with Bayesian fine-mapping.
- Single-cell omics: Used autoencoders that take RNA expression and ESM protein embeddings (SATURN, CellBLAST) to integrate and embed scRNA-seg atlases from multiple species.
- LLM knowledge extraction: Developed a framework to extract quantitative metrics of phenotype severity from GPT-4. 📄
- · Disease genomics embeddings: Developed VAE- and graph-based dimensionality reduction models to create a joint latent representation of genome-wide signatures from all known diseases and phenotypes.
- Topic modeling: Created a suite of proprietary Python packages for NLP-based topic modelling of the PubMed literature to provide business intelligence to the world's largest digital health, biotech, and pharma companies (as a consultant with 120/80 Group).
- · Collaborative AI: Uses generative AI assistants (GitHub Copilot) to accelerate and augment coding.

Project Management

Efficient management strategies to define objectives, track progress and coordinate diverse teams.

- · Documentation: Defines obectives and tracks progress with GitHub Projects. Includes useful documentation in Issues, inline code and shareable reports.
- Version control: Extensive and daily use of GitHub, containers (Docker, Singularity, virtual machines),
- environments (conda) and pipelines (Nextflow). • Team management: Led numerous collaborative
- research projects and supervised researchers at various career stages.


Soft skills

Advances science through effective problem formulation, collaboration and communcation.

- · Problem formulation: Rapid hypothesis generation, project design, and creative problem solving.
- Collaboration: Diverse and global collaborative networking.
- · Communication: Clear and concise distillation of complex results to a variety of audiences. Presented 25 conference posters.

✓ EXPERTISE BY FIELD

The total height of each column represents overall expertise in a given domain. Rectangles are scaled to the relative level of expertise within each subdomain.

PUBLICATIONS

2023	•	rworkflows: automating reproducible practices for the R community Nature Communications (2023) 15(149); https://doi.org/10.1038/s41467-023-44484-5 BM Schilder, AE Murphy, NG Skene I News - Featured in Nature Communications Editors' Highlights
2023		Artificial intelligence for neurodegenerative experimental models Alzheimer's & Dementia (2023) http://doi.org/10.1002/alz.13479 SJ Marzi, BM Schilder , A Nott, C Sala Frigerio, S Willaime-Morawek, M Bucholc, DP Hanger, C James, PA Lewis, I Lourida, W Noble, F Rodriguez-Algarra, JA Sharif, M Tsalenchuk, LM Winchester, U Yaman, Z Yao, DEMON Network, JM Ranson, DJ Llewellyn
2023	•	Artificial intelligence for dementia genetics and omics Alzheimer's & Dementia (2023) http://doi.org/10.1002/alz.13427 C Bettencourt, NG Skene, S Bandres-Ciga, E Anderson, LM Winchester, IF Foote, J Schwartzentruber, JA Botia, M Nalls, A Singleton, BM Schilder , J Humphrey, SJ Marzi, CE Toomey, A Al Kleifat, EL Harshfield, V Garfield, C Sandor, S Keat, S Tamburin, C Sala Frigerio, I Lourida, DEMON Network, JM Ranson, DJ Llewellyn
2023	•	Artificial intelligence for dementia research methods optimization Alzheimer's & Dementia (2023) http://doi.org/10.1002/alz.13441 M Bucholc, C James, A Al Khleifat, A Badhwar, N Clarke, A Dehsarvi, CR Madan, SJ Marzi, C Shand, BM Schilder , S Tamburin, HM Tantiangco, I Lourida, DJ Llewellyn, JM Ranson
2023	•	EpiCompare: R package for the comparison and quality control of epigenomic peak files Bioinformatics Advances (2023) 13(1):vbad049; https://doi.org/10.1093/bioadv/vbad049 S Choi, BM Schilder, L Abbasova, AE Murphy, NG Skene
2022		Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors Biological Psychiatry (2022) 91(3):313-327; https://doi.org/10.1016/j.biopsych.2021.05.029 N Mullins, J Kang, Al Campos,BM Schilder, et al.
2022		 Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies Nature Genetics (2022) https://doi.org/10.1038/s41588-021-00976-y K de Paiva Lopes, G JL Snijders, J Humphrey, A Allan, M Sneeboer, E Navarro, BM SchilderT Raj Im News Microglial transcriptomics meets genetics: new disease leads (Nature Reviews Neurology, 2022) Mighty MiGA: Microglial Genomic Atlas Zeros in on Causal AD Risk Variants (ALZFORUM, 2022) Can a Human Microglial Atlas Guide Brain Disorder Research? (Mount Sinai Health System, 2022) Polygenic Scores Paint Microglia as Culprits in Alzheimer's (ALZFORUM, 2021)
2021		Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms Neurobiology of Disease (2021) 105580; https://doi.org/10.1016/j.nbd.2021.105580 BM Schilder, E Navarro, T Raj
2021	•	Fine-Mapping of Parkinson's Disease Susceptibility Loci Identifies Putative Causal Variants Human Molecular Genetics (2021) ddab294; https://doi.org/10.1093/hmg/ddab294 BM Schilder, T Raj
2021		echolocatoR: An Automated End-to-End Statistical and Functional Genomic Fine-Mapping Pipeline Bioinformatics (2021) btab658; https://doi.org/10.1093/bioinformatics/btab658 BM Schilder, J Humphrey, T Raj

Bioinformétics (2021) 37(23)4933-4998; https://doi.org/10.1093/bioinformatics/biab665 A Murphy, BM Schilder, NG Skene 2021 Dysregulation of mitochondrial and proteo-lysosomal genes in Parkinson's disease myeloid cells. Nature Genetics (2021) https://doi.org/10.1101/2020.07.20.212407 E Navarno, E Udine, K de Pariau Lopes, M Parks, G Ribold, BM Schilder, T. Raj Biowa - Alcond Sine: Fighting Neurodegenerative Disorders (Mount Sinai Health System, 2019) 2021 Phenomewide and eQTL Associations of COVID-19 Genetic Risk Loci (Science (2021) https://doi.org/10.1016/j.isci.2021.102560 2021 Cenome-Wide Association Study of over 40,000 Bipolar Disorder Cases Provides Novel Biological Insights Nature Genetics (2021) 63:817-829; https://doi.org/10.1038/e11588.021-00857-4 N. Mullins, AJ Fordine, KS O'Connell, B Coombes, JBI ColemanBM Schilder, et al. B. News - Researchers idontly 64 regions of the genome that increase risk for bypadr disorder (EurekAlert, 2021) - Largest Biolar Disorder Genetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) 2020 Tensor decomposition of stimulated monocyte and macrophage gene expression profiles Identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9): e100649; https://doi.org/10.1101/199509 S Ramdham, E. Navaro, E. Udime, AG Ethymino, BM Schilder, M. Parks, AG Case, T. Raj	2021	•	MungeSumstats: A Bioconductor Package for the Standardisation and Quality Control of Many GWAS Summary Statistics
Nature Genetics (2021) https://doi.org/10.1101/2020.07.20.212407 E Newson, E Udine, K de Palva Lopes, M Parks, G Riboldi, BM Schilder T Rej B Newson, E Udine, K de Palva Lopes, M Parks, G Riboldi, BM Schilder T Rej 2021 Phenome-wide and eQTL Associations of COVID-19 Genetic Risk Loci 1/Scence (2021) https://doi.org/10.1016/j.iscl.2021.102560 C Moon, BM Schilder, T Raj, K-I Huang 2021 Genome-Wide Association Study of over 40,000 Bipolar Disorder Cases Provides Novel Biological Insights Nature Genetics (2021) 53.817-829; https://doi.org/10.1038/s41588-021-00857-4 N Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI Coleman BM Schilder et al. @ News - Researchers identify 64 regions of the genome that increase risk for bipolar disorder (EurekVert, 2021) - Lipset Dipolar Disorder Genetic Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) 2020 Tensor decomposition of stimulated monocyte and macrophage gene expression profiles Identifies neurodegenerative diseases-specific trans-QOTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1014/98509 S Ramdhani, E Navaro, E Udine, AG Ethymbiou, BM Schilder, M Parks, A Goate, T Raj 2019 Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) S28(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, M. Malayan			
 Nows - Mount Sinai: Fighting Neurodegenerative Disorders (Mount Sinai Health System, 2019) 2021 Phenome-wide and eQTL Associations of COVID-19 Genetic Risk Loci //Science (2021) https://doi.org/10.1016/j.sci.2021.102550 C. Moon, BM Schüder, T. Raj, K.I. Huang 2021 Genome-Wide Association Study of over 40,000 Bipolar Disorder Cases Provides Novel Biological Insights. <i>Nature Genetics</i> (2021) 53:817-829; https://doi.org/10.1038/s41588-021-00857-4 N. Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI ColemaBM Schülder et al. Biological Insights. <i>Nature Genetics</i> (2021) 63:817-829; https://doi.org/10.1038/s41588-021-00857-4 N. Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI ColemaBM Schülder et al. Biological Insights. <i>Nature Genetics</i> (2021) 60:005-000. Presson decomposition of stimulated monocyte and macrophage gene expression profiles lidontifies neurodegenerative disease-specific trans-eQTLs. <i>PLOS Genetics</i> (2020) 16(9):e1008549; https://doi.org/10.1101/496509 S. Ramdhani, E. Navarro, E. Udine, AG Etthymiou, BM Schülder, M Parks, A Goate, T. Raj 2019 Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schülder, HM Petry, PR Hof 2019 FARshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cole Systems 2019 Canke, L. Wang, A. Jones, M. Wojciechwicz, D. Torre, K. Jagodnik, S. Jenkins, P. McQuilton, Z. Flamhotz, M Silverstein, BM Schülder, M. Ma ayan B. Nows Coheen Science Floring the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Heath Sciences Nucleia Acids Research (2019) 47(W1)W971-W577; https://doi.org/10.1003/nar/gks303 A. Lachmann, BM Schüder, ML Wojciechwicz, D. Torre, MV Kuleshov, AB Keenan, A Ma ayan <l< td=""><td>2021</td><td>•</td><td>Nature Genetics (2021) https://doi.org/10.1101/2020.07.20.212407</td></l<>	2021	•	Nature Genetics (2021) https://doi.org/10.1101/2020.07.20.212407
- Mount Sinai: Fighting Neurodegenerative Disorders (Mount Sinai Health System, 2019) Phenome-wide and eQTL Associations of COVID-19 Genetic Risk Loci //Science (2021) https://doi.org/10.1016/j.isci.2021.102550 Coon, BM Schlider, T Raj, K:I Huang Genome-Wide Association Study of over 40,000 Bipolar Disorder Cases Provides Novel Biological Insights Nature Genetics (2021) 33:817-829; https://doi.org/10.1038/s41588-021-00857-4 Nullins, A/ Forster, KS O'Connell, B Coombes, JRI Coleman BM Schlider et al. III IN wws - Researchers (Bort) Schlider, Disorder Cases Schlider, 2021) - Largest Bipolar Disorder Genetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e100849, https://doi.org/10.1014/99509 S Randhani, R Navaro, E Udine, AG Ethymiou, BM Schlider, M Park, A Goate, T Raj Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schlider, HM Patry, PR Hof Evolutionary and the Very of the Schlider, M Park, A Goate, T Raj FAIRshake: Toolki to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Carke, L. Wang, A. Jones, M Wojclechowicz, D Tore, K Jagodnik, S Jenkins, P McGuilton, Z Flamhotz, M Silverstein, BM Schlider, TM Bay, M Wojclechowicz, D Tore, K Jagodnik, S Jenkins, P McGuilton, Z Flamhotz, M Silverstein, BM Schlider, M Bayon ENows - Chosen as 'Featured Frontmatter' article in Cell Systems Ourse I and Schlider, LWayischowicz, D Tore, MV Kuleshov, AB Keenan, A Ma'ayan ENows - Chosen as 'Featured Frontmatter' article in Cell Syst			
IScience (2021) https://doi.org/10.1016/j.isci.2021.102550 C Moon, BM Schilder, T Raj, K-I Huang 2021 Genome-Wide Association Study of over 40,000 Bipolar Disorder Cases Provides Novel Biological Insights Nature Genetics (2021) 53:817-829; https://doi.org/10.1038/s41588-021-00657-4 N Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI Coleman BM Schilder et al. Biological Insights Image: Bipological Insights <td></td> <td></td> <td></td>			
Biological Insights Nature Genetics (2021) 53:817-829; https://doi.org/10.1038/s41588-021-00857-4 N Mullins, AJ Forstner, KS O'Connell, B Coembes, JRI ColemanBM Schilder et al. News - Researchers identify 64 regions of the genome that increase risk for bipolar disorder (EurekAlert, 2021) - Largest Bipolar Disorder Cenetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) 2020 Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs <i>PLOS Genetics</i> (2020) 16(9):e1008549; https://doi.org/10.1101/499509 S Ramdhani, E Navaro, E Udine, AG Efftymiou, BM Schilder, M Parks, A Goate, T Raj 2019 Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/one.24822 BM Schilder, HM Petry, PR Hof 2019 FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources <i>Cell Systems</i> (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, LWang, A.Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McGuilton, Z Flamhoiz, M Silverstein, BM SchilderA Ma'ayan @ News - Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: search engine for ranking genes from arbitrary text queries <i>Nucleic Acids Research</i> (2019) 47(W1)WV571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan @ News - Geneshot: Prering the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 201	2021		iScience (2021) https://doi.org/10.1016/j.isci.2021.102550
Nature Genetics (2021) 53:817-829; https://doi.org/10.1038/s41588-021-00857-4 N Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI ColemanBM Schilder et al. IN News - Researchers identify 64 regions of the genome that increase risk for bipolar disorder (EurekAlert, 2021) - Largest Bipolar Disorder Cenetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) 2020 Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1101/499509 S Ramdhani, E Navarro, E Udine, AG Etthymiou, BM Schilder, M Parks, A Goate, T Raj 2019 Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof Petry, PR Hof 2019 FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder, ML Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan 2019 Geneshot: Search engine for ranking genes from arbitrary text queries	2021	•	· · · · ·
N Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI ColemanBM Schilder et al. B News - Researchers identify 64 regions of the genome that increase risk for bipolar disorder (EurekAlert, 2021) - Largest Bipolar Disorder Genetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) 2020 Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1101/499509 S Ramdhani, E Navaro, E Udine, AG Ethymiou, BM Schilder, M Parks, A Goate, T Raj 2019 Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof 2019 FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, LWang, A.Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder A Ma ayan @ News - Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: Search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/narigks233 A Lachmann, BM Schi			
 Largest Bipolar Disorder Genetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and Precision Medicine, 2021) Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1101/499509 S Ramdhani, E Navarro, E Udine, AG Etthymiou, BM Schilder, M Parks, A Goate, T Raj Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder, ML Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, AM asyan Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, AM asyan Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, AM asyan Nucleic Acids Research (2019) 48(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, AL achmann, AS Feldmann, GW Gundersen, MUCsilversite, ZWang Noucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, AL achmann, AS Feldmann, GW Gundersen, MU			N Mullins, AJ Forstner, KS O'Connell, B Coombes, JRI ColemanBM Schilder et al.
 Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1101/499509 S Ramdhani, E Navarro, E Udine, AG Efthymiou, BM Schilder, M Parks, A Goate, T Raj Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM Schilder A Ma'ayan Chosen as 'Featured Frontmatter' article in Cell Systems Geneshot: search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) - The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang I News - Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) Defining elemental limitation mechanisms: A comparation of cognitive and motor-spatial imitation learning across object- and computer-based tasks Journal of Cognit			- Largest Bipolar Disorder Genetics Study Doubles Genetic Risk Factors (Nordic Society of Human Genetics and
identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1101/499509 S Ramdhani, E Navarro, E Udine, AG Efthymiou, BM Schilder, M Parks, A Goate, T Raj 2019 Evolutionary shifts dramatically reorganized the human hippocampal complex Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof 2019 FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojclechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM SchilderA Ma'ayan @ News - Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: Search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):WS71-WS77; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojclechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan @ News - Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) 2018 eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB			
Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof 2019 FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM SchilderA Ma'ayan Im News - Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan Im News - Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) 2018 eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang Im News - Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) 2015 Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- an	2020		identifies neurodegenerative disease-specific trans-eQTLs PLOS Genetics (2020) 16(9):e1008549; https://doi.org/10.1101/499509
Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822 BM Schilder, HM Petry, PR Hof 2019 FAIRshake: Toolkit to Evaluate the Findability, Accessibility, Interoperability, and Reusability of Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM SchilderA Ma'ayan Im News - Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan Im News - Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) 2018 eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang Im News - Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) 2015 Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- an			
 Research Digital Resources Cell Systems (2019) 9; https://doi.org/10.1016/j.cels.2019.09.011 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM SchilderA Ma'ayan B News - Chosen as 'Featured Frontmatter' article in Cell Systems Geneshot: search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47 (W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan News - Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) - The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang News - Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 	2019		Journal of Comparative Neurology (2019) 528(17):3143-3170; https://doi.org/10.1002/cne.24822
 D Clarke, L Wang, A Jones, M Wojciechowicz, D Torre, K Jagodnik, S Jenkins, P McQuilton, Z Flamholz, M Silverstein, BM SchilderA Ma'ayan News Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan News	2019	•	Research Digital Resources
 BM SchilderA Ma'ayan BM SchilderA Ma'ayan News Chosen as 'Featured Frontmatter' article in Cell Systems 2019 Geneshot: search engine for ranking genes from arbitrary text queries			
 - Chosen as 'Featured Frontmatter' article in Cell Systems Geneshot: search engine for ranking genes from arbitrary text queries Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan III News Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang III News Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 			BM SchilderA Ma'ayan
 Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan News			- Chosen as 'Featured Frontmatter' article in Cell Systems
 Nucleic Acids Research (2019) 47(W1):W571-W577; https://doi.org/10.1093/nar/gkz393 A Lachmann, BM Schilder, ML Wojciechowicz, D Torre, MV Kuleshov, AB Keenan, A Ma'ayan News	2019		Geneshot: search engine for ranking genes from arbitrary text queries
 News Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang News Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) 2015 Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks	_0.0		
 - Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences Library System Update, 2019) - The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang News - Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) 2015 Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 			
 eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang News			- Geneshot: Piercing the Literature to Identify and Predict Relevant Genes (University of Pittsburgh Health Sciences
 networks Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang News			- The Future of AI at the Hasso Plattner Institute for Digital Health at Mount Sinai (Mount Sinai Health System, 2020)
 Nucleic Acids Research (2018) 46(W1):W171-W179; https://doi.org/10.1093/nar/gky458 DJB Clarke, MV Kuleshov, BM Schilder, D Torre, ME Duffy, AB Keenan, A Lachmann, AS Feldmann, GW Gundersen, MC Silverstein, Z Wang News Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 	2018	•	
 MC Silverstein, Z Wang Mews - Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 			
 Mount Sinai Faculty Spotlight: Ma'ayan Lab (Mount Sinai Health System, 2018) Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation learning across object- and computer-based tasks <i>Journal of Cognition and Development</i> (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483 			MC Silverstein, Z Wang
learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483			
learning across object- and computer-based tasks Journal of Cognition and Development (2015) 17(2):221-243; https://doi.org/10.1080/15248372.2015.1053483	2015	ļ	Defining elemental imitation mechanisms: A comparison of cognitive and motor-spatial imitation
			learning across object- and computer-based tasks

2015		Take the monkey and run Journal of Neuroscience Methods (2015) 248:28-31; http://doi.org/10.1016/j.jneumeth.2015.03.023 KA Phillips, MK Hambright, K Hewes, BM Schilder, CN Ross, SD Tardif Im News - Monkeys on a Treadmill? A Conversation with Dr. Kimberley Phillips (Why Social Science?)
2014		Becoming a high-fidelity - super - imitator: what are the contributions of social and individual learning? Developmental Science (2014) 18(6):1025-1035; http://doi.org/10.1111/desc.12276 F Subiaul, EM Patterson, BM Schilder, E Renner, R Barr
2014	•	Working memory constraints on imitation and emulation Journal of Experimental Child Psychology (2014) 128:190-200; http://doi.org/10.1016/j.jecp.2014.07.005 F Subiaul, BM Schilder
		PREPRINTS
2024		Harnessing AI to annotate the severity of all phenotypic abnormalities within the Human Phenotype Ontology <i>medRxiv</i> (2024) KB Murphy, BM Schilder , NG Skene
2023	•	Fine-mapping genomic loci refines bipolar disorder risk genes medRxiv (2023) https://www.medrxiv.org/content/10.1101/2024.02.12.24302716v1 M Koromina, A Ravi, G Panagiotaropoulou, BM Schilder , S Ripke, T Raj, JRI Coleman, N Mullins I News - Currently under journal review
2023		Identification of cell type-specific gene targets underlying thousands of rare diseases and subtraits medRxiv (2023) https://doi.org/10.1101/2023.02.13.23285820 KB Murphy, R Gordon-Smith, J Chapman, M Otani, BM Schilder , NG Skene
2022	•	CUT&Tag recovers up to half of ENCODE ChIP-seq peaks bioRxiv (2022) https://doi.org/10.1101/2022.03.30.486382 D Hu, L Abbasova, BM Schilder, A Nott, NG Skene, SJ Marzi
		ACKNOWLEDGEMENTS
2021	•	eQTL Catalogue: a compendium of uniformly processed human gene expression and splicing QTLs. Nature Genetics (2021) 53:1290-1299; https://doi.org/10.1038/s41588-021-00924-w N Kerimov, JD Hayhurst, K Peikova et al.
2020		Functionally-informed fine-mapping and polygenic localization of complex trait heritability <i>Nature Genetics</i> (2020) https://doi.org/10.1038/s41588-020-00735-5 O WeissbrodAL Price
2019		Wayfinding: The science and mystery of how humans navigate the world. St. Martin's Press (2019) ISBN-13: 978-1250096968; https://www.amazon.co.uk/Wayfinding-Science-Mystery -Humans-Navigate/dp/1250096960 MR O'Connor
2012		EEG oscillations reveal neural correlates of evidence accumulation <i>Frontiers in Decision Neuroscience</i> (2012) 6(106):Jan-13; https://doi.org/10.3389/fnins.2012.00106 M van Vugt, P Simen, L Nystrom, P Holmes, J Cohen

2011		Trial-by-trial adaptation of decision making performance: a model-based EEG analysis Interdisciplinary Perspectives on Cognition, Education, and the Brain (2011) 7; https://www.semanticscholar.org /paper/Trial-by-trial-adaptation-of-decision-making-a-EEG-Vugt-Simen /330371d08842ecd1bda332dd22351a7135b5cb1f M van Vugt, P Simen, J Cohen
		REVIEWERSHIPS
2024	•	[Unpublished article] BMJ Open (2024)
2023	•	Multi-region brain transcriptomes uncover two subtypes of aging individuals with differences in Alzheimer risk and the impact of APOEε4 <i>Neuron</i> (2023) https://doi.org/10.1101/2023.01.25.524961 AJ Lee, Y Ma, L Yu, RJ Dawe, C McCabe, K Arfanakis, R Mayeux, DA Bennett, HU Klein, PL De Jager
2023	•	Summary statistics-based association test for identifying the pleiotropic effects with set of genetic variants
		Bioinformatics (2023) https://doi-org.iclibezp1.cc.ic.ac.uk/10.1093/bioinformatics/btad182 D Bu, X Wang, Q Li
2021		Most pathways can be related to the pathogenesis of Alzheimer's Disease Alzheimer's Research & Therapy (2021) https://doi.org/10.3389/fnagi.2022.846902 SL Morgan, P Naderi, K Koler, Y Pita-Juarez, D Prokopenko, IS Vlachos, RE Tanzi, L Bertram, WA Hide
2021		CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using
		co-evolutionary information Bioinformatics (2021) https://doi.org/10.1093/bib/bbac502 Z Peng, Z Li, Q Meng, B Zhao, L Kurgan
2020	•	Single-cell transcriptomics and in situ morphological analyses reveal microglia heterogeneity across the nigrostriatal pathway
		Neurobiology of Disease (2020) https://doi.org/10.3389/fimmu.2021.639613 O Uriarte Huarte, D Kyriakis, T Heurtaux, Y Pires-Afonso, K Grzyb, R Halder, M Buttini, A Skupin, M Mittelbronn, A Michelucci
2019	•	Deconstructing cerebellar development cell by cell PLOS Genetics (2019) https://doi.org/10.1371/journal.pgen.1008630 MJ van Essen, S Nayler, EBE Becker, J Jacob
2019	•	Partitioning the genetic architecture of amyotrophic lateral sclerosis Nature Neuroscience (2019) https://doi.org/10.1101/505693 IJ Broce, RS Desikan
	ر ام	INTERNAL TALKS
2022	•	Drug (re)discovery in the age of genomics: multi-omic strategies for identifying disease treatments Seminar Drug Discovery and Trials Optimisation Working Group Deep Dementia Phenotyping Network (DEMON)
2021		We've tagged a lot of cells, and sorted them in wells, some of the reads were double, So we looked into the trouble Seminar UK Dementia Research Institute Imperial College London

2021	•	Beyond GWAS: getting more out of genomic data in the age of machine learning
		Methods Optimisation Working Group Deep Dementia Phenotyping Network (DEMON)
2021	•	Interspecies translation of single-cell transcriptomic signatures Seminar Experimental Models Working Group Deep Dementia Phenotyping Network (DEMON)
2020	•	Automated consensus fine-mapping of neurological disorder genomics Seminar
		UK Dementia Research Institute (UK DRI)
	ر اً:	INVITED TALKS
2024		Harnessing AI to annotate the severity of all phenotypic abnormalities within the Human Phenotype Ontology Turing Omics Meeting Omics Data Generation & Analysis Group The Alan Turing Institute
2023		Multi-omics medicine: investigating shared genetic risk factors to better understand neurodegenerative disease Turing Omics Meeting Omics Data Generation & Analysis Group The Alan Turing Institute
2022		Decomposing the phenome: learning the latent genomic structure underlying thousands of diseases and traits Neuroepidemiology of Aging Webinar RUSH Alzheimer's Disease Center (RADC) RUSH University
2022		Drug (re)discovery in the age of genomics: multi-omic strategies for identifying disease treatments Department Seminar 3D (Drug, Disease, Delivery) Center / Department of Pharmaceutical Sciences University of South Dakota
2020	•	Statistical and functional genetic fine-mapping across multiple disease Seminar Alzheimer's Disease Sequencing Project Columbia University / Icahn School of Medicine at Mount Sinai
2020		Statistical and functional genetic fine-mapping across multiple disease Laboratory of Neurogenetics Friday Workshop National Institute on Aging National Institutes of Health
	ر اً:	CONFERENCE TALKS
2023		rworkflows: taming the Wild West of R packages EuroBioc2023
		Bioconductor 45-minute workshop.
2023		rworkflows: taming the Wild West of R packages BioC2023
		Bioconductor 10-minute talk within the Infrastructure Track.

	1.1	
2023		Navigating the rare diseases landscape: A comprehensive approach to identify gene therapy targets based on cell type-phenotype associations Intelligent Systems For Molecular Biology / European Conference on Computational Biology (ISMB/ECCB)
		International Society for Computational Biology (ISMB) 20-minute talk within the Bio-Ontologies COSI Track.
2022		Systematic quantification of animal model viability across human diseases Informatics-Synapse Joint Early Career Researcher Meeting
		UK Dementia Research Institute (UK DRI)
2020		Automated genetic fine-mapping of neurological disorders London Genetics Network
		The Genetics Society 6-minute talk
2019		Parkinson's disease derived monocytes show alteration in the phago-lysosomal pathway American Society of Human Genetics (ASHG) Annual Meeting
		American Society of Human Genetics (ASHG) Co-contributor
2017		Comparative neuroanatomy of navigational maps in primates JB Johnston Club for Evolutionary Neuroscience
		Society for Neuroscience (SfN) Co-contributor
2016		The evolution of human hippocampal gene expression JB Johnston Club for Evolutionary Neuroscience
		Society for Neuroscience (SfN)
2015		The neurobiological effects of exercise on marmoset models of Multiple Sclerosis Marmoset Social
		Society for Neuroscience (SfN)
2015		The neurobiological effects of exercise on marmoset models of Multiple Sclerosis JB Johnston Club for Evolutionary Neuroscience
		Society for Neuroscience (SfN)
	ر اً:	CONFERENCE POSTERS
2024		Navigating the Phenomic Landscape: systematic characterisation of the latent genomic space underlying all traits and diseases
		Target to Patient (2024) https://www.ebi.ac.uk/industry/targettopatient/ BM Schilder, NG Skene
2023	•	CUT&Tag recovers up to half of ENCODE ChIP-seq peaks
		Connectome (UK Dementia Research Institute) (2023) https://ukdri.ac.uk/ J Ismail, D Hu, L Abbasova, BM Schilder, A Nott, NG Skene, SJ Marzi
2023	ļ	Navigating the rare diseases landscape: A comprehensive approach to identify gene therapy
		targets based on cell type-phenotype associations Intelligent Systems For Molecular Biology / European Conference on Computational Biology (ISMB/ECCB)
		(2023) https://www.iscb.org/ismbeccb2023
	1	BM Schilder, KB Murphy, R Gordon-Smith, J Chapman, M Otani, NG Skene

2023	•	Identification of cell type-specific gene targets underlying thousands of rare diseases and clinical phenotypes
		Genomics of Rare Diseases (2023) https://coursesandconferences.wellcomeconnectingscience.org/event /genomics-of-rare-disease-20230424/ BM Schilder, KB Murphy, R Gordon-Smith, J Chapman, M Otani, NG Skene
2023		Statistical and Functional Fine-Mapping as a Powerful Tool to Unravel the Biological Etiology of Bipolar Disorder
		Biological Psychiatry (2023) 93(9):S18; https://doi.org/10.1016/j.biopsych.2023.02.063 M Koromina, A Ravi, BM Schilder, B Muller, J Coleman, T Raj
2023		Systematic quantification of animal model viability across human disease UK Dementia Research Institute Scientific Advisory Board (2023) BM Schilder, NG Skene
2022		Systematic quantification of animal model viability across human disease Rising Scientist Day at Imperial College London (2022) BM Schilder, NG Skene
2022	İ	A compehensive statistical and functional fine-mapping pipeline applied to Bipolar Disorder GWAS risk loci
		<i>European Neuropsychopharmacology</i> (2022) 63:e14; http://dx.doi.org/10.1016/j.euroneuro.2022.07.037 M Koromina, A Ravi, BM Schilder, B Muller, J Coleman, T Raj, N Mullins
2021	•	Genetic Effects on Human Microglia Transcriptome in Neuropsychiatric Diseases
		<i>Biological Psychiatry</i> (2021) 89(9):S84-S85; https://doi.org/10.1016/j.biopsych.2021.02.225 G Snijders, K de Paiva Lopes, J Humphrey, S Allan, M Sneeboer, R Navarro, BM Schilder, R Vialle, M Parks, R Missall, W van Zuiden, F Gigase, R Kubler, AB van Berlekom, C Bottcher, J Priller, R Kahn, L de Witte, T Raj
2020	•	Cell-type-specific reconstruction of primate evolution from genomic positive selection
		Rising Scientist Day at Imperial College London (2020) K Murphy, BM Schilder, NG Skene
2019		Automated genetic and functional fine-mapping of Parkinson's Disease Loci American Society of Human Genetics (2019)
		BM Schilder, T Raj
2019		Parkinson's disease derived monocytes show alteration in the phago-lysosomal pathway American Society of Human Genetics (2019)
		E Udine, E Navarro,BM Schilder,T Raj
2018		Learning X2K: Parameter Optimization via Genetic Algorithms to Calibrate the Expression2Kinases Pipeline
		<i>Illuminating the Druggable Genome</i> (2018) BM Schilder, A Lachmann, M Kuleshov, A Ma'ayan
2018		Learning X2K: Parameter Optimization via Genetic Algorithms to Calibrate the Expression2Kinases Pipeline
		Big Data 2 Knowledge - Library of Integrated Network-Based Cellular Signatures (LINCS) (2018) BM Schilder, A Lachmann, M Kuleshov, A Ma'ayan
2017	•	The evolution of the human hippocampus and neuroplasticity Association for American Physical Anthropologists (2017) https://www.abstractsonline.com/pp8/index.html#! /4071/presentation/4471 RM Schilder, B L Bradley, CC Shenwood
		BM Schilder, BJ Bradley, CC Sherwood
2016	İ	The molecular evolution of plasticity and the human hippocampus Society for Neuroscience (2016) https://www.abstractsonline.com/pp8/index.html#!/4071/presentation/4471
		BM Schilder, BJ Bradley, CC Sherwood

The helper hinderer task revisited: an infant eye tracking study The George Washington University Research Day (2014)
A Gokhale, BM Schilder, F Subiaul
Dendritic morphology of pyramidal neurons across the visual stream: A direct comparison of chimpanzees and humans Society for Neuroscience (2013)
BM Schilder, O Adeyo
The striatum in the evolution of learned vocalizations: Understanding the neurobiological precursors to human speech using a chimpanzee model <i>Society for Neuroscience</i> (2013) S Bianchi, T Duka, G Muntane, BM Schilder, CD Stimpson, WD Hopkins
Imitation & emulation in a novel box task
Association for Psychological Science (2013)
L Zimmerman, N Brito, C Mendelson, R Barr, E Renner, BM Schilder, F Subiaul
A study of imitation and working memory in 2- to 4- year-olds Association for Psychological Science (2013)
R Barr, F Subiaul, L Zimmerman, L Renner, BM Schilder, C Mendelson, L Golojuch
The impact of wealth on sharing preferences in children Child Development Society (2013)
J Miller, BM Schilder, L Peizer, F Subiaul
RESEARCH EXPERIENCE
Lead Data Scientist
 120/80 Group • New York, NY, US/ • Offers data-driven consultation services to a wide portfolio of high-profile digital healthcare, pharmaceutical and biotech companies.
 Developed a suite of proprietary softwares to extract customised business intelligence from the published literature to generate customised and interpretable reports to clients.
Provides clients guidance on strategic AI implementation, data analysis, publication and transparency.
Bioinformatician II Icahn School of Medicine at Mount Sinai (Department of Neuroscience / Department of Neurology / Department of Genetics & Genomics / Ronald M. Loeb Center for Alzheimer's Disease)
 Developed machine learning systems to integrate large-scale multi-omics datasets (e.g. whole-genome sequencing, bulk and single-cell RNA-seq, epigenomics, clinical data) to uncover the molecular mechanisms underlying neurodegenerative diseases (e.g. Alzheimer's, Parkinson's, ALS).
• Computationally identified specific disease-causal variants, pathways and cell-types for subsequent functional wet lab validation (e.g. CRISPR-cas9 editing in patient-derived cell cultures, iPSCs and cerebral organoids).

2015	• The effects of climatic trends, variability, and rates of change on mammalian brain evolution Association for American Physical Anthropologists (2015)
	BM Schilder, WA Barr, R Bobe, CC Sherwood
2015	 Individual, Observational, and Imitation Learning in Orangutans and Children Association for American Physical Anthropologists (2015)
	E Renner, BM Schilder, F Subiaul
2014	• The helper hinderer task revisited: an infant eye tracking study The George Washington University Research Day (2014)
	A Gokhale, BM Schilder, F Subiaul
2013	• Dendritic morphology of pyramidal neurons across the visual stream: A direct comparison o chimpanzees and humans Society for Neuroscience (2013)
	BM Schilder, O Adeyo
2013	• The striatum in the evolution of learned vocalizations: Understanding the neurobiological precursors to human speech using a chimpanzee model <i>Society for Neuroscience</i> (2013)
	S Bianchi, T Duka, G Muntane, BM Schilder, CD Stimpson, WD Hopkins
2013	 Imitation & emulation in a novel box task
	Association for Psychological Science (2013)

Effects of exercise on disease progression and cognition in the marmoset EAE model

R Barr, F Subiaul, L Zimmerma

JB Johnston Club for Evolutionary Neuroscience (2015)

KA Phillips, MK Hambright, K Hewes, BM Schilder, B Jagessar, B t'Hart, SD Tardif

The impact of wealth on s 2013 Child Development Society (2 J Miller, BM Schilder, L Peizer,

RESEARCH EXPERIMENTAL INFORMATION INFORMATICA INFORMATION INFORMATICA INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATICA INTERNA INFORMATICA INTERNA INFORMATICA INTERNA INFORMATICA INTERNA INFORMATICA INTERNA INFORMATICA INTERNA INFORMATICA INTERNA INTERICA INTERNA INTERNA INTERNA INTE

Lead Data Scientist

120/80 Group

2015

2013

2019

2020

2018

- · Offers data-driven consultatio biotech companies.
- · Developed a suite of proprieta generate customised and inter
- · Provides clients guidance on

Bioinformatician II

- Developed machine learning bulk and single-cell RNA-seq, neurodegenerative diseases (e
- · Computationally identified spe b validation (e.g. CRISPR-cas9

2018		Bioinformatician II
2018	Ĭ	Icahn School of Medicine at Mount Sinai (Department of Pharmacological Sciences)
2017		 Conducted computational systems biology research. Integrated and analyzed large-scale genomic and biomedical data (e.g. Python, R, JavaScript).
		 Developed evolutionary algorithm to optimize gene network kinase regulator prediction (eXpression2Kinases). Developed and deployed computational tools, software, databases and web applications for basic and clinical research, resulting in 3 peer-reviewed publications.
2017		Participant
		 Technische Universität Dresden / eMed (Summer School in Systems Medicine) Frauenchiemsee, Germany Attended lectures and extended skills in extraction and analysis of big data from biomedical and neurogenomic resources.
		• Developed, performed and wrote manuscript for collaborative bioinformatics research project in less than one week.
2016		Participant Icahn School of Medicine at Mount Sinai (Scientific Computing & Data Science) • Intensive summer school in high-performance computing, coding, genome database utilization and bioinformatics
		methods including transcriptomics and genetic association testing.
2017 		Collaborator Trinity University / Southwestern National Primate Research Center (Department of Neuroscience)
2014		 San Antonio, TX, USA Investigated the neurobiological mechanisms underlying the ameliorating effects of exercise on relapse-remitting Multiple Sclerosis.
2014	•	Teaching Assistant / Project Leader The George Washington University / Rutgers University (Department of Anthropology) • Served as Teaching Assistant while excavating Lower Paleolithic hominin sites (Homo, Paranthropus). • As Project Leader, investigated the running biomechanics of local Daasanach tribespeople while mentoring
		undergraduate students.
2013	•	Research Assistant
2013 2011		Research Assistant The George Washington University (Department of Anthropology) • Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. • Trained junior and senior personnel on lab protocols.
		The George Washington University (Department of Anthropology) <pre> Washington, DC, USA • Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues.</pre>
 2011 2013 		 The George Washington University (Department of Anthropology) Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. Trained junior and senior personnel on lab protocols. Senior Lab Manager The George Washington University (Department of Speech, Language & Hearing Sciences)
 2011		The George Washington University (Department of Anthropology) Washington, DC, USA • Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. • Trained junior and senior personnel on lab protocols. Senior Lab Manager
 2011 2013 		 The George Washington University (Department of Anthropology) Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. Trained junior and senior personnel on lab protocols. Senior Lab Manager The George Washington University (Department of Speech, Language & Hearing Sciences) Washington, DC, USA Organized and trained dozens of undergraduates to conduct weekly cognitive development research; designed and/or directly contributed to over 15 research projects in two years. Volunteer Researcher University of Winnipeg / University of Belgrade (Department of Anthropology / Department of Archaeology)
 2011 2013 2011		 The George Washington University (Department of Anthropology) Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. Trained junior and senior personnel on lab protocols. Senior Lab Manager The George Washington University (Department of Speech, Language & Hearing Sciences) Vashington, DC, USA • Organized and trained dozens of undergraduates to conduct weekly cognitive development research; designed and/or directly contributed to over 15 research projects in two years. Volunteer Researcher
 2011 2013 2011		 The George Washington University (Department of Anthropology) ♥ Washington, DC, USA Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. Trained junior and senior personnel on lab protocols. Senior Lab Manager The George Washington University (Department of Speech, Language & Hearing Sciences) ♥ Washington, DC, USA Organized and trained dozens of undergraduates to conduct weekly cognitive development research; designed and/or directly contributed to over 15 research projects in two years. Volunteer Researcher University of Winnipeg / University of Belgrade (Department of Anthropology / Department of Archaeology) ♥ Sicevo, Serbia Excavated Paleolithic fossils and tools (H. heidelbergensis, H. neanderthalensis) at Mala Balanica, Velika Balanica, and Pešturina sites. Volunteer Researcher
 2011 2013 2011 2012		The George Washington University (Department of Anthropology)
 2011 2013 2011 2012		 The George Washington University (Department of Anthropology)
 2011 2013 2011 2012 2011		The George Washington University (Department of Anthropology)
 2011 2013 2011 2012 2011		The George Washington University (Department of Anthropology) Washington, DC, USA Performed dissection, histology, microscopy and quantitative stereology in post-mortem primate brain tissues. Trained junior and senior personnel on lab protocols. Senior Lab Manager The George Washington University (Department of Speech, Language & Hearing Sciences) Organized and trained dozens of undergraduates to conduct weekly cognitive development research; designed and/or directly contributed to over 15 research projects in two years. Volunteer Researcher University of Winnipeg / University of Belgrade (Department of Anthropology / Department of Archaeology) Sicevo, Serbia • Excavated Paleolithic fossils and tools (H. heidelbergensis, H. neanderthalensis) at Mala Balanica, Velika Balanica, and Pešturina sites. Volunteer Researcher Universidad de Murcia (Department of Zoology & Physical Anthropology) • Sucavated Paleolithic fossils and tools from Cueva Negra (H. heidelbergensis) and Sima de las Palomas (H. neanderthalensis) with an international research team. Volunteer Research Intern Mercican Museum of Natural History (Division of Anthropology) • New York, NY, USA
 2011 2013 2011 2012 2011 2011		The George Washington University (Department of Anthropology)

1 2009		 Experimental Analysis of Animal Behavior & Cognitive, Linguistic & Psychological Sciences) Experimental Analysis of Animal Behavior & Cognition: Conducted various operant conditioning experiments on rats. Gained experience in animal behavioral training, data collection, and data analysis in MATLAB. Laboratory in Genes and Behavior: Tested transgenic mice with modified N-type voltage-gated calcium channel subunits in a battery of cognitive and sensorimotor tasks. Results were published.
		TEACHING / MENTORING EXPERIENCE
- 2020	•	Research Mentor Imperial College London (Department of Brain Sciences / Department of Life Sciences) Ventored students and offiliated projector
		 Mentored students and affiliated projects: Kitty Murphy (PhD): 'Evolutionary pressures on cell types: leveraging species differences to gain insight into neurodegenerative disease risk'
		 Sheen Lei (BSc): 'Benchmarking cell-type-specific enrichment of genome-wide disease signatures'
		 Ted Reese (MSc): 'Computational cell-type annotation of single-cell epigenomics data' Xindong Sun (MSc): 'Benchmark of Targeted insertion of promoters sequencing (TIP-seq) on histone modification
		H3K27ac and H3K27me3 in K562 cell line' • Shuhan Shen (MSc): 'Evaluation and optimisation of methods for identifying the cell types underlying genetic disease
		signatures' Lusheng Li (MSc): 'Genetic identification of cell types underlying mammalian phenotypes'
		 Sera Choi (BSc): 'EpiCompare: R package for QC and benchmarking epigenetic datasets' Emilie Cottard (MSc) & Will Lunt (BSc): 'A meta-analysis of selective cell-type vulnerability in Parkinson's Disease neuropathology'
		 Jai Chapman (BSc): 'Expression Weighted Cell Type Enrichment as a Tool for Identifying Cell Types Underlying Rare Disease Phenotypes'
		• Bobby Gordon-Smith (MSc): 'Identification of cell types involved in rare disease-associated human phenotypes'
		 Leyla Abbasova (MSc): 'Analysis and optimisation of CUT&Tag for epigenomic profiling of the brain'
		 Barney Hill (BSc): 'Identification of cell-types associated with latent factors inferred from phenome-wide GWAS summary statistics'
2020		Research Mentor
 2019		Icahn School of Medicine at Mount Sinai (Department of Neuroscience / Department of Neurology / Department of Genetics & Genomics / Ronald M. Loeb Center for Alzheimer's Disease)
		 Mentored MS, MD, and PhD students in projects focused on computational exploration of phenotype clustering and genomic regulation of neurodegenerative diseases.
2018	•	Research Co-mentor Icahn School of Medicine at Mount Sinai (Department of Pharmacological Sciences) Very York, NY, USA
		 Mentored students and affiliated projects: Vivian Utti (BSc): 'ChEA3: Transcription Factor Enrichment Analysis' as part of the Summer Research Training Program in Biomedical Big Data Science.
		 Mary Duffy (PhD): 'Predicting upstream kinase regulators from interaction network databases' Zach Flamholz (BSc): 'modEnrichr: a suite of gene set enrichment analysis tools for model organisms'
2018	•	Guest Lecturer Icahn School of Medicine at Mount Sinai (Department of Pharmacological Sciences) Vew York, NY, USA
		 Lectured on data visualization in Python and Jupyter notebooks in the PhD/MD course 'Programming for Big Data Biomedicine'.
2017		Research Mentor
ا 2016		 The George Washington University (Department of Anthropology) Washington, DC, USA Mentored students and affiliated projects:
- *		 Mentored students and anniated projects. Jamie Kleiner (BSc): 'Animal model simulating MS and exercise's impact on adult hippocampal neurogenesis'
2015		Teaching Assistant The George Washington University (Department of Anthropology) <pre> Washington, DC, USA </pre>
		• Course: 'Human Brain Evolution'
		Guest lectured, graded all assignments and exams, and provided additional educational support during office hours.

Student Researcher Brown University (Department of Cognitive, Linguistic & Psychological Sciences)

2010

2009

13

Providence, RI, USA

2014		Teaching Assistant
2014		The George Washington University (Department of Psychology) • Washington, DC, USA • Course: 'Biological Psychology'
		 Led undergraduates in article discussions, graded all assignments and exams, and provided additional educational support during office hours.
2014 	•	Teaching AssistantThe George Washington University (Department of Anthropology)Vashington, DC, USA
2013		 Course: 'Biological Anthropology' Led undergraduate students in two, 2-hour lab sessions per week, graded lab assignments and exams, and provided additional educational support during office hours.
2013	•	Research Mentor
 2012		 The George Washington University (Department of Psychology) Washington, DC, USA Mentored students and affiliated projects:
		Anushka Gokhale (BSc): 'Infants' Social Assessment of Characters Through Eye Gaze'
2013 	•	Lab Protocol Trainer The George Washington University (Department of Anthropology)
2011		• Trained undergraduate, graduate, and post-doctoral researchers in Social Cognition Lab and Lab for Evolutionary Neuroscience in a variety of methodological research protocols.
	æ	SOFTWARE PACKAGES
1.		MSTExplorer R Multi-Scale Targets Explorer: Systematically identify, prioritise and visualise cell-type-specific gene therapy targets across the phenome. https://github.com/neurogenomics/MSTExplorer https://doi.org/10.1101/2023.02.13.23285820
2.		 HPOExplorer R Import, annotate and visualise the 18k+ hierarchically structured clinical phenotypes across the Human Phenotype Ontology. https://github.com/neurogenomics/HPOExplorer https://doi.org/10.1101/2023.02.13.23285820
3.		KGExplorer 🗬 🔁 Query, construct, and analyse large-scale biomedical knowledge graphs and ontologies. C https://github.com/neurogenomics/KGExplorer
4.		autoCV 😨 🗟 🗓 Automatically generate and style your CV from tables. O https://github.com/bschilder/autoCV
5.	•	anndataR R Bring the power and flexibility of AnnData to the R ecosystem, allowing you to effortlessly manipulate and analyze your single-cell data.
6.		gptPhD Q Query Large Language Models for the purposes of systematically extracting biomedical knowledge. https://github.com/neurogenomics/gptPhD
7.		ThreeWayTest Summary statistics-based association test for identifying the pleiotropic effects with set of genetic variants. thtps://github.com/bschilder/ThreeWayTest
8.		SCAVENGE R Variant to function mapping at single-cell resolution through network propagation. https://github.com/sankaranlab/SCAVENGE https://doi.org/10.1038/s41587-022-01341-y

9.	•	 rworkflows R Continuous integration for R packages. Automates testing, documentation website building, and containerised deployment. https://github.com/neurogenomics/rworkflows https://doi.org/10.21203/rs.3.rs-2399015/v1
10.		TIPseeker 😨 R package for post-processing [single-cell] TIP-seq data. https://github.com/neurogenomics/TIPseeker
11.		PeakyFinders R R package for mining, calling, and importing epigenomic peaks. https://github.com/neurogenomics/PeakyFinders
12.		graphiti 😨 Extract colour palettes from graffiti artworks. O https://github.com/bschilder/graphiti
13.		SkillNet 😨 Creates user-specific contribution networks from GitHub Organization repositories. https://github.com/neurogenomics/SkillNet
14.		phenoRx R Make cell type-specific predictions for patients based on clinical phenotypes and/or risk genes. O https://github.com/neurogenomics/phenoRx
15.		phenomix R d R package for the exploration and analysis of many genotype-phenotype datasets at once. O https://github.com/neurogenomics/phenomix
16.		MAGMA.Celltyping Identify cell types underlying the associations found in GWAS summary statistics. https://github.com/neurogenomics/MAGMA_Celltyping
17.		EWCE R Expression Weighted Celltype Enrichment. https://github.com/NathanSkene/EWCE
18.		EpiCompare R R package for QC and benchmarking epigenetic datasets. https://github.com/neurogenomics/EpiCompare https://doi.org/10.1101/2022.07.22.501149
19.		orthogene R Interspecies gene mapping.
20.		MungeSumstats R Standardise the format of summary statistics from GWAS. https://github.com/neurogenomics/MungeSumstats https://doi.org/10.1093/bioinformatics/btab665
21.		scNLP R Tools for applying natural language processing (NLP) techniques to single-cell (sc) omics data. https://github.com/neurogenomics/scNLP
22.		scKirby R Automated ingestion and conversion of various single-cell data formats. https://github.com/neurogenomics/scKirby
23.		geneshotR R R package for querying and processing results from Geneshot. https://github.com/bschilder/geneshotR
24.		templateR R Self-updating template for developing R packages. https://github.com/neurogenomics/templateR https://doi.org/10.21203/rs.3.rs-2399015/v1

	I	
25.		echoverseTemplate R Self-updating template for creating echoverse R packages. https://github.com/RajLabMSSM/echoverseTemplate/
		https://doi.org/10.1093/bioinformatics/btab658
26.		echolocatoR R R package for end-to-end statistical and functional fine-mapping with extensive dataset access. ttps://github.com/RajLabMSSM/echolocatoR https://doi.org/10.1093/bioinformatics/btab658
27.	•	echodata Examples of fine-mapped GWAS summary statistics, data formatting functions, and API access to the echolocatoR Fine-mapping Portal.
28.	•	echoannot Functions for annotating genomic data with annotations and epigenomic data. https://github.com/RajLabMSSM/echoannot https://doi.org/10.1093/bioinformatics/btab658
29.		echoplot R R package for LocusZoom-inspired GWAS/QTL visualization, with API access to LD panels. O https://github.com/RajLabMSSM/echoplot https://doi.org/10.1093/bioinformatics/btab658
30.		echoconda R Various utility functions to find, build, and use conda environments from within R. https://github.com/RajLabMSSM/echoconda https://doi.org/10.1093/bioinformatics/btab658
31.		echotabix R Tabix indexing and querying. https://github.com/RajLabMSSM/echotabix https://doi.org/10.1093/bioinformatics/btab658
32.	•	echoLD R LD downloading and processing. https://github.com/RajLabMSSM/echoLD https://doi.org/10.1093/bioinformatics/btab658
33.		echofinemap R Statistical and functional fine-mapping functions. https://github.com/RajLabMSSM/echofinemap https://doi.org/10.1093/bioinformatics/btab658
34.	•	echodeps Creates interactive dependency networks for R packages. https://github.com/RajLabMSSM/echodeps https://doi.org/10.1093/bioinformatics/btab658
35.	•	echogithub R Access and process metadata from GitHub. https://github.com/RajLabMSSM/echogithub https://doi.org/10.1093/bioinformatics/btab658
36.	•	devoptera R Practical tools for R developers. https://github.com/RajLabMSSM/devoptera https://doi.org/10.1093/bioinformatics/btab658
37.	•	downloadR R Single- and multi-threaded downloading functions. https://github.com/RajLabMSSM/downloadR https://doi.org/10.1093/bioinformatics/btab658

38.		catalogueR 😨 R package for rapid API-access and colocalization of summary statistics from eQTL Catalogue. O https://github.com/RajLabMSSM/catalogueR https://doi.org/10.1093/bioinformatics/btab658
39.		TopicModeler b Proprietary Python package to run advanced topic modeling on text corpuses.
40.		LinkReporter 👶 Proprietary Python package to extract job postings and company employee listings from LinkedIn and generate interactive business intelligence reports.
41.		PubReporter P Proprietary Python package for extract relevant scientific literature, gather citations, and generate interactive business intelligence reports.
		DATABASES / WEB APPS
1.		EpiArchives R Public archive for EpiCompare reports. https://github.com/neurogenomics/EpiArchives https://doi.org/10.1101/2022.07.22.501149
2.		Rare Disease Celltyping Portal R Web portal connecting to multiple R Shiny apps to explore, visualize, and download cell type-specific enrichment results and systematically prioritised gene targets for over 6,000 rare disease phenotypes. C https://github.com/neurogenomics/rare_disease_celltyping_apps Inters://neurogenomics.github.io/rare_disease_celltyping_apps/home https://doi.org/10.1101/2023.02.13.23285820
3.		 Parkinson's Disease Omics Review R Data and code associated with the Parkinson's Disease review paper by Schilder, Navarro & Raj (Neurobiology of Disease, 2021). https://github.com/RajLabMSSM/PD_omics_review https://rajlabmssm.github.io/PD_omics_review/ https://doi.org/10.1016/j.nbd.2021.105580
4.	•	Selective Vulnerability Meta-analysis Selective Vulnerability Meta-analysis: Shiny app dedicated to the exploration and dissemination of meta- analysed cell counts manually curated and harmonised from the Parkinson's Disease literature. thttps://github.com/neurogenomics/SelectiveVulnerabilityMetaAnalysis
5.		MAGMA Files Public Gene enrichment files for hundreds of GWAS generated with Multi-marker Analysis of GenoMic Annotation (MAGMA) for use in downstream analyses. thttps://github.com/neurogenomics/MAGMA_Files_Public
6.		echolocatoR Fine-mapping Portal Access to interactive plots and fine-mapping results across many GWAS/QTL datasets using echolocatoR. ttps://github.com/RajLabMSSM/Fine_Mapping_Shiny ttps://rajlab.shinyapps.io/Fine_Mapping_Shiny https://doi.org/10.1093/bioinformatics/btab658
7.		COVID-19 Patient Tracker - Web app for summarizing and visualizing real-time EHR data of COVID-19 patients within the Mount Sinai Health System.

8.	•	 Tensor Decomposition Shiny App R Interactive application to explore and download all results and plots from Ramdhani et al. (PLOS Genetics, 2020). https://github.com/RajLabMSSM/Tensor_myeloid https://rajlab.shinyapps.io/Tensor_myeloid https://doi.org/10.1101/499509
9.	•	Hippocampal Evolution R Interactive code, results and visualization for the manuscript "Evolutionary selective pressures dramatically expanded and reorganized the human hippocampal complex". https://github.com/bschilder/Hippo_Eco https://bschilder.github.io/Hippo_Eco/HPsubfield_eco https://doi.org/10.1002/cne.24822
10.		Geneshot 🥌 🖶 🗓 🗒 🗒 Flexible tool to identify genes associated with any biomedical term and to predict novel target genes.
11.		X2K Image:
	P	WEBSITES
1.	•	Personal Website 😇 😇 🤴
		 https://github.com/bschilder/BMSchilder https://bschilder.github.io/BMSchilder
2.	•	Official Raj Lab Website 😇 😇 🤨
		https://github.com/RajLabMSSM/RajLab_website http://www.rajlab.org
	\$	GRANTS
	•	Total (all grants): \$2,949,872 Total (as primary applicant): \$311,382
2023	•	EuroBioc2023 Scholarship, Bioconductor Project: 'rworkflows: taming the Wild West of R packages' I News - Awarded to support attending the EuroBioc2023 meeting. • Role: Primary applicant • Amount: \$250
		• PI: BM Schilder
2023		BioC2023 Scholarship, Bioconductor Project: 'rworkflows: taming the Wild West of R packages' I News - Awarded to support attending the BioC2023 meeting. Additionally included free lodging.
		• Role: Primary applicant • Amount: \$1500 • PI: BM Schilder

2023	•	Junior Scientist Conference Grant, The Genetics Society	
		Project: 'Identification of cell type-specific gene targets u	inderlying thousands of rare diseases and subtraits'
			• Amount: £750
2023	•	Imperial UK Research Institute Impact Acceleratio Imperial College London	on Account,
		Project : 'Creating commercial kit solutions for single cell factors'	epigenetic profiling of histone marks and transcription
		Role: Co-applicant PI: NG Skene	• Amount : £80,000
2024 I	•	Turing Community Award, Alan Turing Institute	
2022		Project : 'Multi-omic medicine: dissecting the cell-type-sp	ecific molecular mechanisms underlying
		neurodegenerative disease genomics'	
		Role: Primary applicant PI: BM Schilder	• Amount: £1,500
2022		National Institutes of Health	
LULL		Project: 'Statistical and functional fine-mapping of bipola	r disorder genetic risk loci'
		• Role: Co-applicant	• PI: N Mullins
2021	•	Collaborative Single Cell and Spatial Transcripton UK Dementia Research Institute	-
		 Project: 'Amplifying genome coverage of single cell epige Role: Co-applicant 	• Amount: £12,790
		• PI: D Hu, NG Skene	Anount: 212,700
2020	•	National Institutes of Health	page Constin and Phanetunia Data"
		 Project: "Cognitive Systems Analysis of Alzheimer's Dise Role: Co-applicant 	• Amount: \$2,523,431
		• PI: T Raj, D Knowles	Anount. 92,020,401
2024	•	UK Dementia Research Institute	
		Project: 'UK DRI at Imperial Distinguished Studentship'	
2020		Role: Primary applicant PI: BM Schilder	• Amount: £217,000
2019		The Michael J. Fox Foundation	
Ι		Project: "The Role of Peripheral Myeloid Cells in Parkins	son's Disease"
2017		• Role: Fundee	• PI: T Raj
2020		The Michael J. Fox Foundation	
		Project : 'Functional Fine-Mapping of LRRK2 Locus'	
2017		• Role: Fundee	• PI : T Raj
2017	•	National Science Foundation Project: 'The evolution of the hippocampus and adult neu memory'	urogenesis: novel insights into the origins of human
		•	• Amount: \$31 543
2017		Wenner-Gren	
2011		Project : 'The evolution of the hippocampus and adult neu	urogenesis: insights into the origins of human memory'
		• Role: Primary applicant	• Amount: \$19,512
		PI: BM Schilder	

2016		Leakey Foundation Project: 'The evolution of the hippocampus and adult neurogenesis: Novel insights into the origins of human memory' • Role: Primary applicant • PI: BM Schilder
2016	•	COSMOS Club Project: 'The evolution of adult neurogenesis across primates' • Role: Primary applicant • Pl: BM Schilder
	ö	AWARDS
2023	•	Prize for Computational Reproducibility in Dementia Research, UK Dementia Research Institute Project: 'rworkflows: taming the Wild West of R packages' INews - Awarded honourable mention.
2022	•	Prize for Computational Reproducibility in Dementia Research, UK Dementia Research Institute Project: 'MungeSumstats: A Bioconductor package for the standardisation and quality control of many GWAS summary statistics' I News - Awarded honourable mention.
2022		Poster Competition, Rising Scientist Day Project: 'Systematic quantification of animal model viability across human diseases' IN News - Awarded prize for research poster competition.
2022		Award for Outstanding Contribution, NEUROHACK, Deep Dementia Phenotyping Network (DEMON) Project: 'Predicting ALS drug targets using integrative multi-modal deep learning' IN News - Individually awarded for outstanding contributions during the NEUROHACK 2022, a competitive 4-day hackathon to apply AI in finding ALS therapeutic solutions.
2021	•	 Prize for Computational Reproducibility in Dementia Research, UK Dementia Research Institute Project: 'echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline' Im News Winners announced for UK DRI's first 'Prize for Computational Reproducibility in Dementia Research (UK Dementia Research Institute, 2021) Jointly awarded inaugural prize with Kitty Murphy.
2021		Centre Photography Competition, UK Dementia Research Institute Project: 'Wildfire Circle, Golden Brain, Wildfire, Geneshot, Geology of Biology, Neon Brain' INews - One of the winners of the scientific image competition.
2019	•	Art of the Brain, Friedman Brain Institute, Icahn School of Medicine Project: 'Wildfire' I News - Awarded 2nd place and Featured on the cover of Biological Psychiatry: Volume 87, Issue 12 (2020). Exhibited and auctioned at the Grady Alexis Gallery (New York City), where all proceeds were voluntarily donated to the Diversity in Neuroscience Initiative.

AFFILIATIONS

- Synapse Working Group
- Informatics Working Group

DEMON Network

Data science and AI for dementia

- · Genetics & Omics Working Group
- Experimental Models Working Group
- Drug Discovery & Trials Optimisation Working Group

The Alan Turing Institute

- Turing Enrichment Scheme
- Turing-Roche Strategic Partnership
- Turing Omics Data Generation & Analysis Interest Group
- Turing Clinical AI Interest Group

Bipolar Disorder Working Group

- Chair of the Bioconductor Cloud Methods Working Group
- Lead of the Bioconductor GitHub Actions Subgroup

Member

✓ DATA VISUALISATION / ARTWORK PORTFOLIO

2022	•	echoverse Dependency Graph
		 Interactve graph showing the dependency structure of all packages within the echoverse suite.
-	•	Hex stickers
2020		All hex stickers for R packages I've helped develop.
2023	•	3D Human Phenotype Ontology Q London, UK
		 3D force-directed graph of the Human Phenotype Ontology (clouds above) with kernel density estimation projected from the x/y planes (mountains below). Connections represent the hierarchical relationships between rare diseases and their associated symptoms/phenotypes. Associated preprint
2023	•	Multi-scale Rare Disease Mechanisms
		 Network of systematically prioritised gene therapy targets for rare diseases Associated preprint
2023	•	Curriculum Vitae Connexa
		• Term co-occurrence network generated by analysing all data that went into this CV.
2021	•	Experiments with Generative AI
		 wombo.art: 'Multi-omic medicine: dissecting the cell-type-specific mechanisms in neurodegeneration genomics' wombo.art: 'Multi-omic medicine: neurodegenerative disease genomics' wombo.art: 'Multi-omic medicine: neurodegeneration' wombo.art: 'Neurodegeneration'
2021	•	Lights in the dark genome: the current state of Parkinson's research
		 The majority of PD genetics research has focused on a relatively small number of genes. Above, are the top 75 most commonly mentioned genes in the PD literature, extracted using Geneshot. Associated study
2020	•	Pacrophage Q London, UK
		 Colocalised genetic locibut shaped as Pac-Man! Associated study
2020	•	Circos
		 Colocalised genetic loci across a variety of neurological disease GWAS and cell-type-specific QTLs. Associated study
2019	•	Wildfire Circle ♥ New York, NY, USA
		 Awarded 2nd place in the 2019 Art of the Brain competition, put on by the Mount Sinai's Friedman Brain Institute. Exhibited and auctioned at the Grady Alexis Gallery (New York City), where all proceeds were donated to the Diversity in Neuroscience Initiative . Featured on cover of Biological Psychiatry.

2019

| 2003

Wildfire

New York, NY, USA

• New York, NY, USA

• Transcriptomic data from 16k+ individual brain cells (shown as points) after reducing the dimensionality with an autoencoder and UMAP. 5 million tracts are shown interconnecting these cells, where shorter tract length represents greater similarity in their molecular profiles.

3D Brain Model

• 3D model of my brain generated from MRI scans.

STRACURRICULAR EXPERIENCE

Competitive Running Career

- 8+ years of varsity and Division I cross country, winter track, and spring track throughout high school and college.
- Year-round, daily training and travel to weekly competitions necessitated a dedicated and regimented lifestyle in order to succeed as a student-athlete
- Running remains a passion of mine and I enjoy training for ultra-marathons in my free time.
- This passion, work ethic and self-insight have carried over to all aspects of my life, including my career as a researcher.

| 1995

Music Production

.

- Writes, records, produces and performs original music.
- Instruments: keys, percussion, vocals, etc.
- Proficient in Logic Pro X Digital Audio Workstation (DAW).
- Experiments with generative AI.

• Earth

• Earth